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ABSTRACT

The structure and behavior of barotropically unstable
and stable wave disturbances in the vicinity of a zonally
varying easterly jet are studied numerically with a
linearized barotropic vorticity equation on a 8-plane. The
easterly jet is approximated by a Bickley jet with a sTow
zonal variation. The numerical results are also compared

with a simple mechanistic analytical model using the local

phase speed and growth rate concepts. The results are
grossly similar in several respects to that expected from
the parallel flow theory of barotropic instability, however,
the resultant structure of the waves causes a spatial growth
rate greater than predicted by the local growth rates
computed with a parallel flow model. In the stable region,
the structure leads to strong dynamic damping. When a
uniform advective velocity is added to a variable mean flow,
the differences between the behavior of the computed waves
and that implied by the parallel flow theory are somewhat
reduced. The waves remove kinetic energy from the mean

flow and most of this energy is removed on the downwind side
of the jet. The computed structure and behavior of the waves
have a number of features that resemble those observed in

the vicinity of the upper troposphere easterly jet during

the summer monsoon.
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I. INTRODUCTION

In the Northern Hemisphere summer, a moderately strong
easterly jet exists south of the Tibetan high near the 200 mb
level (Krishnamurti, 1971a, 1971b). Synoptic-scale moving
d{sturbances occur at the level of the jet, and it appears
that these disturbances arise from barotropic instability of
the mean flow. The jet contains regions of large vorticity
gradients where the necessary condition for barotropic
instability is sometimes locally satisfied. If the observed
disturbances were the result of barotropic instability, they
would extract energy from the mean zonal flow and the plane-
tary-scale waves, since the latter combine with the zonal
flow to give the large vorticity gradients south of the
Tibetan high. In fact, Kanamitsu et al. (1972) have shown
that wavenumbers 6-8 in the wind spectrum in the region
between 155 and 15N receive energy through barotropic
interaction with the zonal and wavenumber 1 flow.

1571
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Furthermore, Krishnamurti (19

spectra of the meridional wind component for selected
tropical Tatitudes and he found a peak in the spectra near
wavenumbers 6-8 at latitudes near the easterly jet.

Colton (1973) studied barotropic interactions between
quasi-stationary long waves and transient synoptic waves

using a semi-spectral numerical model. His long waves were

forced with a specified divergence field following the




diagnostic model of Holton and Colton (1972). Results from
a long term integration of his model reproduced several
features of the upper tropospheric general circulation. In
particular, his model simulated the disturbances observed by
Krishnamurti (1971a, 1971b) in the vicinity of the easterly
jet. His model showed that wave disturbances entering
upstream of the easterly jet regime grow and increase their
speed and wavelength as they approach the longitude of the
jet velocity maximum, achieve their maximum amplitude a
considerable distance downstream of the jet maximum, and
eventually decay as the disturbances move out of the easterly
jet regime. Furthermore, the high and low pressure centers
of these transient wave disturbances occur on the wings of
the central axis of the jet stream. Colton concluded that
the transient disturbances are due to scale interactions
{nvolving short-term barotropic instability.

In both Krishnamurti's observational and Colton's
numerical studies, the zonal variation of the jet apparently
has significant effects on the dynamic behavior of the
transient disturbances. This study is an attempt to under-
stand better such effects. This is a linear study, therefore,
the results can only be suggestive of the complicated nonlinear
behavior of the real atmosphere. However, since the ampli-
tudes of synoptic waves are generally of smaller magnitude

in the tropics than in middle and higher latitudes, a linear

13




stability approach should be a reasonable approximation to
the real atmosphere.

This study is an extension of the linear barotropic
instability theory developed over the years by various
investigators. The extension of this study is the zonal
variation of the basic flow. Rayleigh (1890, 1913) developed
the concept of hydrodynamic instability and Kuo (1949)
extended this concept to a rotating atmosphere by including
the beta term. Since then, many investigators have studied
the stability of barotropic zonal flows. Kuo (1949, 1951),
Lipps (1962), Yanai and Nitta (1968) investigated barotropic
instability of parallel symmetric westerly jet flows. Nitta
and Yanai (1969), Yamasaki and Wada (1972), and Kuo (1973)
extended this theory to parallel symmetric easterly jet flows.
Lipps (1965, 1970) and Kuo (1973) further extended the concept
to parallel asymmetric barotropic zonal flows. In general,
when the necessary criterion for linear barotropic instability
is satisfied, normal mode solutions for barotropic unstable

waves have certain properties: 1) they exist within a range

o

intermediate wavelengths, 2) they have a latitudinal tilt
opposite to the shear of the barotropic zonal wind and this
tilt creates momentum fluxes which redistribute the kinetic
energy from the mean zonal flow to the disturbance, 3) their
phase speeds in a westerly jet are less then the speed of the

maximum westerly wind, and 4) their phase speed in an




easterly jet may be greater than the maximum easterly wind

(Pedlosky, 1964; Yamasaki and Wada, 1972). In this case,
however, the growth rates are generally very small.

Nitta and Yanai (1969) modified the concept that
unstable solutions exist only within an intermediate range
of wavelengths. For an easterly sinusoidal jet flow, they
found a distinct short wave cut-off but no apparent long wave
cut-off for instability. Yamasaki and Wada (1972) modified
this by showing that the long wave cut-off is dependent on
the strength and sharpness of this sinusoidal easterly jet.
For very strong and sharp velocity profiles, the long wave
cut-off approaches infinity. For relatively weak but still
unstable profiles, a finite long wave cut-off exists for
this jet. Kuo (1973) referred to this long wave cut-off
region as the modified Rossby regime in his numerical study
for an easterly Bickley jet.

A1l these stability studies have used parallel baro-
tropic flows, i.e., there is no zonal variation in the basic
flow. Lorenz (1972), however, investigated primarily by
analytical means the barotropic instability of a flow pattern
which varies with longitude. The basic flow is a neutral
Rossby wave superposed on a uniform westerly flow. Essen-
tially, this flow depicts the progression of large scale
waves embedded in a westerly current. Zonal flows of mid-

latitudes are generally considered to be barotropically

stable, but Lorenz showed that a uniform zonal flow together




with superposed neutral Rossby waves may be unstable with

respect to further perturbations. Lorenz found that the
growth rate of the perturbations is comparable to the growth
rate of the errors of large numerical atmospheric models.
Based on this, Lorenz suggested that barotropic instability
may be partly responsible for the unpredictability of the
real atmosphere.

In addition to the regular or normal mode eigensolutions,
there are "singular" or "continuum" mode solutions which
have been discussed by Rayleigh (1913), Case (1960), Pedlosky
(1964), and Yanai and Nitta (1968). These "singular"
solutions correspond to continuous eigenvalues of phase
velocity (c) which are equal to the basic flow, U(y), some-
where in the zonal current. Since these "singular" solutions
are continuous, there is an infinite number of solutions.
Case showed that these continuum modes are needed to form a
complete set of solutions. He also showed that the disturb-
ance formed by the sum of the continuum modes has a
y-structure tilt in the same sense as the basic flow shear
and that it usually decays as 1/t or faster, where t repre-
sents time.

It is clear that in the real atmosphere, "mean flows"
vary both in space and time. They are neijther purely
barotropic nor purely baroclinic, and in including both
effects in a linear stability study is a very difficult task.

Most of the investigators have examined the dynamic

16
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instability problem by studying each effect separately.
This study, however, focuses only on barotropic instability.
We hope that a better understanding of the kind of upper
tropospheric waves studied by Krishnamurti (1971a, 1971b)
and Colton (1973) near the easterly jet can be achieved by
studying the behavior of barotropic waves in a region of a
variable mean easterly wind. We are especially interested
in the situation where the waves move into and out of baro-
tropically unstable regions. Therefore, the objective of
this work is to determine the dynamic stability behavior,
the structure and the energetics of barotropic waves propa-
gating in a zonally varying mean wind.

With a very simple analytical model, Pedlosky (1976)
studied the finite amplitude dynamics in a zonally varying
baroclinic current. The mean flow of his model changes
abruptly from a weakly unstable regime with a constant growth
rate to a stable regime downstream. He found that disturb-
ances may propagate into stable regions substantially
undiminished, retaining a considerable memory of its history
in a Tocalily unstable region.

The mean flow in our barotropic study, however, has a
full downstream variation such that the stability of the
mean flow ranges from locally strong instability to locally

strong stability.
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Our approach is as follows: firstly, we develop a
numerical model based on the linear non-divergent barotropic
vorticity equation on a beta-plane incorporating the dynamics
of transient barotropic waves in a region of variable mean
wind. The nex " wind is an easterly hyperbolic secant-
squarred (Bick ,d the mean meridional wind is derived
in such a way that che wean flow is non-divergent. Secondly,
using this numerical model, we conduct selected case studies
to determine fundamental dynamic stability and energetic
properties of these barotropic waves. Thirdly, we compare
the results obtained from the numerical model with the
parallel flow theory. This is done by constructing a simple
mechanistic analytical model which incorporates the local
stability concept of the parallel flow theory. This compari-
son gives us further insights on the effect of the variable
mean wind.

',,,‘ The domain of the numerical model consists of an open
channel with rigid walls at the north and south boundaries.
The basic flow is a slowly varying easterly Bickley jet.

A periodic forcing is applied on the inflow or eastern
boundary such that periodic perturbations are generated from
this boundary into the channel flow which represents waves
moving into the region from the east. The western boundary
condition allows the waves to move out of the channel. As
the waves move through the region, they grow or decay in
relation to the local stability properties of the mean flow,

whereas at each point the fields vary periodically.



IT. NUMERICAL MODEL

A, GENERAL FORMULATION
The governing equations are the barotropic vorticity

equation using a beta (B) plane approximation:

9
3

Y

ac
5t T Y

3% " =
+ ng + 8v Q ch (2.1)

=

and the non-divergent continuity equation
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u 9

<

—x-+~é—y'=0, (2.2}
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_ 9V Ju
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Here 38 is the north-south gradient of the earth's vorticity
and is given by its value at 10° latitude. Q is a forcing
function representing non-barotropic effects which is
required to maintain the vorticity field, Df is a frictional
coefficient. Since the flow is two-dimensional and non-

divergent, a streamfunction (y) is defined such that

u = -Tgi v=ai

y b} ax b (2-4)

thus

4 vzw g (2.5)

Here u and v are the velocities of the flow in the x and y

direction, respectively. Equation (2.1) now becomes

2 2
3 2 3y 3v-Y . ¥ 37 v 3y . o &
3T V¥ T3y To% T Ox 5y T Rgx U= By (2.6)
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The governing equations are linearized by separating

quantities into the following form:

vix,y,t) = v(x,y) + v'(x,y,t) . (2.7)

Here the bars are the basic state variables and the primes
are the perturbation gquantities. The mean streamfunction
v(x,y) satisfies the mean vorticity equation when a non-

barotropic source term is added. The basic state equation

is therefore

- 2-. - 2- -
1 8_.113 EN) i Yy IV Y \'lﬂ A ,_,27
3y 35X * X 3y = 33x Q Df/ U {2.8)

which is non-linear. § is needed to maintain the basic
vorticity field in steady state. The resultant linearized

perturbation equation is:

|
32,0 _ 28 290y, 33 3vly' | v 39%)
ot 3y  3X 3 3y 3y 3 X
3y 3v25 3" 2 )
+ - + B8 = - v :
3X 3y "3x et ¥ (2.5

The advective terms in (2.9) can be written in Jacobian form

such that

&

TR - L g(3,9%0) - 3,90 - s2 -0ty (2010)

where (2.10) is a Poisson equation with the tendency of the
perturbation stream-function as the dependent variable. The

right side of (2.10) is the forcing or non-homogeneous part




of the Poisson problem for 3y'/3t. The north-south boundaries

are rigid walls where

A 2. 11}

and

aEn .
-~ 0 . (2.12)

The inflow or eastern boundary conditions are specified such

that

$'(0,y,t) = Aly) sin(uwt) + 8(y) cos(ut), (2.13)

and

2 (0,y,t) = Aly)ucos(ut) - 8(y)usin(ut), (2.14)

where w is the specified frequency of the forcing. A(y)

and B(y) are the y-structure coefficients of the forcing
which are described in Chapter IV. The purpose of this
forcing is to introduce waves into the region from the east.

The other condition on the inflow boundary is

i 52w'

z'(0,y,t) = vzw' = s kYt e e (2.15)

This expression follows because it is expected that ' will
have a spatial variation of the form eikx. The determination
of k is discussed later. This boundary forcing is expected
to lead to periodic wave disturbances throughout the domain
after a certain time period of numerical integration. It

turns out that the outflow boundary conditions are crucial
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for attaining this periodic state, because the wave disturb-
ances must be able to propagate freely out of this boundary.
Therefore, a Sommerfeld radiation condition (Pearson, 1974)
for both the tendency and the vorticity is used to approxi-
mate this mechanism on the outflow boundary:
g9ty 3 3y’
7t () cro x (3t)» and (2.16)
gE* . 3g’
gtn Cro 3X (2.17)

Here Cr Pearson

0
(1974) showed that the Sommerfeld radiation condition is a

is a specified constant phase velocity.

consistent boundary condition for numerical models of initial

value systems admitting dispersive waves. The fundamental

problem with most outflow boundary conditions is the reflec-
tion of incident waves from a boundary back into the interior

region. This is usually disastrous for numerical models

admitting dispersive waves. Pearson showed that, if Cn is

0
the

~lemm am 2 A3 A A \
cnosen JUu»uTOuSlj, the

thly

hly through

1
igngwaves move smo uagn

[14
O

boundary. For short wavelengths, however, an area with a

large coefficient of viscosity near the boundary is often
required to help control the reflection problem. According
to Pearson, the amount of damping is proportional to the

wavenumber. A Matsuno finjte difference scheme is used in

our numerical model. This scheme has a tendency to damp the

short waves thus we need only to use a relatively small

coefficient of friction to control wave reflection at the




outflow boundary. A friction coefficient of Df = .15x10's

sec'] is used which is equivalent to an e-folding decay time

of approximately 7.7 days.

B. ZONALLY VARYING BASIC FLOW
The basic velocity field is an easterly Bickley jet

defined by

0 2 ERY)
u(x,y) = - U(x) sech (ET%T) = Hs S 3y (2.18)

Here d(x) is a characteristic length scale of the jet and is

related to the half width d(x) (Kuo, 1973) by

d(x) = - 1.76 d(x) . (2.19)

U(x) is the velocity of the jet at y=0 and U, is a constant
velocity. The basic flow streamfunction () is specified
to be constant at both the southern (y=-D) and northern (y=D)

boundaries as follows:

, where (2.20)

y y {220
(x,y) = U(x) J. SeChz(ET%T)dy £ U J‘ dy + 3(-D),
-D

and
D D
$(D) = U(x) .f sechz(aréy)dy + U J' dy
- Y -D
+ y(-D) = C,. (2.22)
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For a symmetric jet profile about y=0, C] = C2. Equations

(2.21) and (2.22) are conveniently simplified:

Bxy) = U(x)d(x) Ctanh(grdy) + tanh(a%n
: (2.23)
* Uy + U D + p(-D),
and
3(D) = 2U(x)d(x) tann(grey) + 200 + 3(-D) . (2.24)
From (2.23), the jet velocity at y=0 is given by:
(D) - 2uD - §(-D) ] 0

R e e

Therefore, if d(x) varies slowly in x, then, so does the

basic flow. The x-variation for the characteristic length

PR A (YA N 13

scale is given by i

(X-io) | :

‘850 km + 350 km scos[Zw ~ e %3 X, j
L \
= ¢ b

- d (2.26) E

l1200 kn cxosx, )
Here ;o is the longitude where the x-variation of the cosine -
function starts and [ is the wavelength of this variation.
Figures 1-3 show the basic fields of streamfunction
(x,y), zonal velocity u(x,y) and vorticity Z(x,y),
respectively. Here L is set to 43,000 km. The domain is
40,1éS km long and 4,000 km wide (D = 2,000 km). At y=0,
the basic zonal velocity is -15.51 m sec™! at the inflow

boundary (x = 14,625 km) increasing slowly to a maximum value
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1

of -30 m sec”' at x=0. From this longitude the central

velocity slowly decreases downstream to a minimum value of

-13.4 m sec™! at x = -21,375 km. Between this longitude and

the outflow boundary (x = -25,500 km), the basic flow is
parallel. From Eq. (2.26), we note that the characteristic
length scale, d(x), varies between 500 km at G(x,o)m and

ax

1200 km at G(x’o)min‘
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ITI. LOCAL STABILITY OF BASIC FLOW

The lccal growth rate of the variable mean flow of the
numerical model is first determined by a parallel flow (i.e.,
no x-variation) numerical model of Williams et al. (1971) in
order to gain some insight on the stability characteristics
of the mean flow. This model is hereafter referenced as the
parallel flow model. By setting 3%/3x = 0 in (2.9) of the

numerical model, the governing equation of this model is

[e]

[ |
(sS4 No ¥
ct

3y
5K

F 2w 0,1 o2t 4 [n - 20 (3.1)
BR R 392 :

The symbols of (3.1) have the same meaning as the numerical

model of Chapter II, except that the basic flow is given by

u(y) = - U sechz(%) s (3.é)

where U is a specified constant that scales the magnitude of
the central velocity of the Bickley jet (y=0). The character-
istic length d is also a specified constant. Assuming that
all perturbation quantities are periodic in x, Eq. (3.1) is
finite Fourier transformed in x with wavenumber k, and is
solved as an initial value problem. This approach gives the
phase speed, growth rate, and the wave structure of the most
unstable mode. It is convenient to write y' in the following

form:

p'(x,y,t) = A(y,t) cos(kx) + B(y,t) sin(kx). (Svd)
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Equation (3.3) is substituted into (3.1), and the coefficients
of coskx and sinkx are separately set equal to zero. The
coskx term gives:
_ . :

3 243A - 3 2 53U
[==% - &)= = = K[l {— - K"} + {g ~ =118

3y At 3y 3y

= Df[a_?‘ i k2]A’
3y

and the sinkx term gives:

[ - k2128 - (i 25 - k%) + (B - L
5y 5y 3y
NS i T (3.5)
f; m‘ ) . .

The boundary conditions are
v'(x,D,t) = y'(x,-D,t) = 0. (3.6)

Equations (3.4) and (3.5) are written in finite difference
form such that the second derivative with respect to y of a

typical variable A is approximated as

2 A. - 2A. + A.
]
(231 = [(-—4 -1y, (3.7)
3y Ay

where j is the y-grid index and ay is the distance between
grid points. The model has 32 grid intervals and ay is set
equal to 125 km (the width of the channel is 4000 km). This
y-grid structure is the same one used in the complete
numerical model. Centered time differences are used for all

quantities except those involving friction. The time step

i | 30 I
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(at) is set to 1 hour. The friction terms are evaluated at
the previous time step in order to insure linear computa-
tional stability (Haltiner, 1971). The integration begins
with a forward time step. The boundary conditions (Eq. 3.6)

become

A=B=0aty=+b, (3.8)
Equations (3.4) and (3.5) are solved for the tendencies by
the exact method of Richtmyer (1967). These equations can be
solved numerically as a function of 3, Df, u(y), and k for
any initial conditions. These equations are integrated until
their solution becomes exponential in behavior. The basic
flow U(y) is specified for a number of selected longitudes
of the variable mean flow of Fig. 2. The wavenumber k is
also specified for each integration.

In general, these equations have a set of discrete normal
mode solutions as well as a continuous spectrum of solutions
(Case, 1960, Pedlosky, 1964 and Yanai and Nitta, 1968). Only
the normal mode solutions can give significant growth and the
most unstable mode will dominate after a sufficient period
of time.

This parallel flow model is numerically integrated to
150 days. The initial disturbance amplitude has a north-
south structure with no tilt. The eigensolution obtained
includes wave structure of the most unstable mode, and its

growth rate and phase speed. By selectively testing different

wavelengths, the most unstable wavelength is determined.




T

Figures 4-7 illustrate the eigensolutions of the most
unstable discrete mode for the selected jet profiles. Since
the jet flow and the wave disturbance are both symmetric
about y=0, only the lower half of the y domain is shown.

It is interesting to note that the eigensolution amplitude
has three maxima, one at y=0 and one on each wing (only lower
wing is shown) of the jet approximately 600-800 km from y=0.
It is apparent that when the jet is relatively sharp (i.e.,

d < 700 km), the central maximum predominates. When the jet
is relatively smooth and broad (i.e., d > 800 km), the
maximum on the wings predominates. Figure 8 shows the

growth rate (n) corresponding to the most unstable wave-
lengths (L) as a function of x based on the parallel flow
model. In a local stability sense, the most unstatble
wavelengths range between 3650 km at x=0 where the jet has
its maximum velocity and 4600 km near the inflow and outflow
regions of the jet regime. We observe that locally the
greatest instability based on both tilt and growth rate is
indicated where the jet achieves its maximum central velocity
(u = -30m sec']). This parallel flow model can only give
the most unstable discrete mode; it can not depict any
dynamic damping. This is reflected in Fig. 7(b) which
corresponds to x = -22,500 km, outside the unstable region.
Here the solution exhibits essentially no tilt and the growth

rate asymptotically approaches the linear frictional damping

rate. Thkis is further discussed in Chapters VI and VII.
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These results are consistent with those calculated by
Kuo (1973) in a numerical study of a parallel Bickley jet
and, in a local stability sense, may be viewed as a first
approximation of the behavior of moving waves within a

zonally-varying mean wind.




IV. FINITE DIFFERENCE EQUATIONS

The governing Eq. (2.9) of the complete numerical model

is written with the advective terms in Jacobian form:

23y "' _ = 2 y g l= Ay 2.
L e e D B R SR TR L B
where
_aa sb 3a 3b
J(a,b) = 3X 3y - 3y 3x (4.2)

for any two scalar quantities a and b. The Arakawa (1966)
finite difference approximation for the Jacobian is used.
This scheme conserves botn the mean square vorticity and the
mean kinetic energy.

We define the tendency of the disturbance streamfunction
by

i _ ry' ,
Ti,j 5 bl ) (4.3)

where superscript t is the current time, and subscripts i

and j refer to the x and y grid points, respectively. In the
following finite difference equations, at is the time step

and is set equal to one hour. Ax and Ay are the x and y

grid point intervals, respectively. Equation (4.1) is written

using the Matsuno or Euler-backward finite difference scheme:

1 - ! t R
V T1,J R JT,J[p"?Z;) ] 'Ji,j[l‘),-‘ 1V}

REUSC 1) PSR TR B Ny T




- — b it -;ur'-'——-r-
|* - lt t A
G bi,j * Ti,J“t’ (48]
2 * * 2 * 2
v T19j = -;Il-'l j[:'/,v ""|] -Ji,j[‘)"'] 1')]
B .- Y t-at
1] =l 2
B[ 2AX :l' De W i (4.6)
JERGE o £
Bl LR ok p LS

The finite difference form for the Laplacian of the tendency

is given by: (4.8)
t B t =€ L RS 1.
gort . - Tegeg ~ Mo g " Tiogenr . Toogen = =Te g * ¥y 409
s ax? AYZ

and for the Jacobian terms, it is given by:

- ] = T ,|t " = t
Ji,; " Ty R R PRI

(4.9)
T o ,:t G -
(”1,j+1 p1,j-1) (”1+1,J ’1-1,J)J ’
@t
- ] P |t r't
;U; ; T Faxay [bi+],j(ci+],j+1 5 °f+],j-]) + (4.10)
= —'t .
SR e R
m _.t =5
-yj’j+](s1-+]’j+1 - -,1-_]’j+])+

& 6 S .
+ .'D'i,‘]'-](’i"'],j-] - 31_]’\]-1)]’
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and

<:> t 1

] ok : _
;IT = Taxhy [Ci,j+1 Chyeg 201 = B4 aupl + (4.11)
i,
it - =
a2 W L T B R

1 (= i T
o B T wi—],j-1)] ’

where ; %t @t @t
J]_i ‘[‘I’,VZ;’!']: . .+;D—. -+m_. . : (4.12)

sJ 1,] 1,J 1ad
3
T
;B~ [p'ﬂza] is expanded in the same manner as for

.5d

t

J ]
15

The Poisson Eq. (4.1) is solved for the tendency with
a direct method developed by Sweet (1971). This direct method
solves a finite difference approximation to Poisson's equation
on a rectangular domain with Dirichlet boundary conditions.
The finite difference form of the boundary conditions are as
follows:

a) Northern (j=J) and southern (j=0) boundaries:

b;t; = 0 : i=0,I for j=0 and j=J, (4.13)
' J
;%to = ;;t] = 40,1, (4.14)
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r't = 't . i =
31’J Ci,\J‘] . 1—0aI- (4.]5)

b) Inflow or eastern boundary (i=I, j=0, j)

R R Sy = .
13 Aj sin(w2at) + Bj cos(w2at), (4.16)
Tg’j = Ajwcos(mzat) . éj wsin(wiat), (4.17)
and
£ & t
i, - 2yl + oylt.
£ e & 1 s il 169 [,j-1

L= + 4.18

where w is the specified frequency and kI . is a specified

wavenumber structure. Time is discretized by:

(s
11

sat, where 2 =0,1,2,3,4 ... (4.19)

A. and Bj are the y-structure coefficients of the forcing
J

(4.14)

: These coefficients were determined from the eigen-
solution of the parallel flow model. The velocity profile
for determining Aj and Bj of the inflow boundary condition
was selected from the inflow region of the numerical model.
This profile is described in Chapter V.

¢) Outflow or western boundary (i=0, j=0, J)

t-at t
, P 5.k,
TE oo il . LIS — (4.20)
|




1 t = v'|t'At *
b 0,5 = Y0.3 + To,j At. (4.22)

t
) J
the analytical Sommerfeld radiation condition (2.16) and

The tendency Totj (4.20) and ;'O (4.21) were derived from
(2.17), respectively. Since (2.16) is not in the usual form
of the Dirichlet boundary condition, the direct Poisson
equation solver, POISDD, had to be modified. Details of this

modification are given in the Appendix.
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V. EXPERIMENT I

The investigation of the numerical model of the variable
mean wind comprises two experiments. Experiment I is the
principal one and will be discussed in detail in this chapter.
In Experiment II a constant velocity is added to the mean
flow and its results will be discussed in Chapter VII.

The forecast equation is integrated in time from an
initial state of v ' = 0. Tne periodic forcing on the eastern
boundary causes the interior streamfunction to grow and the
integration is continued until the time variation is periodic
cverywhere with the forcing frequency. Ry day 70, the model
has achieved the fully periodic state and the wave packet
envelope has become quasi-stationary. The forcing freguency
is varied until the value which gives a maximum perturbation

amplitude is found.

The following values are used in Experiment I:

2D

4000 km, 40125 km, G(0,0) = - 30 m sec™!,

XR-XL =

Yo

0, L = 43000 km, ax = 375 km, ay = 125 km.

For these parameters the maximum response occurs for a
forcing period of 3.25 days. It requires several complete
integrations to refine the inflow and outflow boundary
conditions for the specified forcing period. Wavenumber (k)
for the inflow vorticity boundary condition (4.13) was
determined by observing the predominant wavelengths near the

inflow region. The radiation phase velocity (cr ) in the
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outflow boundary condition (4.15) was similarly determined
by observing the predominant wavelengths near the outflow
region. Since the domain is periodic, the phase velocity is

approximated by the simple relation:

Cry = (5.1)

=
Ko
Here w is the local frequency which,in the fully periodic
state,is equal to the forcing frequency, and ko is the wave-
number measured near the outflow region. Thus, for Experiment
I, a phase velocity (cr ) of <13 m sec"] is used for the
outflow Sommerfeld radigtion boundary condition.
A. RESULTS

The solution for the Case I experiment becomes fully
periodic after 70 days. The y' field at t=70 days is shown
in Fig. 9. An entire train of barotropic waves actually
exists throughout the length of the channel, but the waves
upstream of x = -4,500 km and in the outflow region are not
shown in Fig. 9 because of their relatively small amplitude.
The maximum wave amplitude occurs at x = -12,750 km and is
2 and 4 orders of magnitude larger than at the jet maximum
(x=0) and the inflow boundary (x = 14,625 km), respectively.
Figure 10 shows the lower half of phase angle tilt s*{x,y)
of the wave disturbance y-structure for various values of
longitude x. We note that the waves upstream of approximately

x = -20,000 km tilt opposite to the mean wind shear, which is

necessary for barotropic instability. In fact the tilt near
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the inflow boundary shows relatively weak instability and

this tilt slowly increases, reaching a maximum at x=0 where
the jet velocity is maximum. Further downstream, the tilt
slowly decreases and eventually reverses near x = -é0,000 km.
This behavior is consistent with the growth rates for the
most unstable wavelengths shown in Fig. 8 which were computed
using the parallel flow model. Near the outflow boundary,
however, the tilt is reversed. This indicates dynamic
stability or a flow of energy from the disturbance back to

the mean flow. Therefore, we observe that the tilt of the
wave disturbance qualitatively adjusts to the local stability
of the mean flow (see Figs. 4-7). We recall that the parallel
flow model can only solve for the most unstable discrete mode,
thus, dynamic damping is not indicated in Fig. 7(b) for the
outflow region.

Figure 11 shows the envelope of the wave packet,
evaluated at y = -750 km, where the disturbance amplitude is
large. This envelope <y'(x)> is obtained by recording the
maximum and minimum ' values that occur at each longitude
over a period of ten days after the solution becomes fully
periodic. If a larger time interval were chosen, the envelope
would not change. Note that the maximum amplitude occurs in
the area where the local growth rate becomes zero (see Fig. 8).
The smoothness of the fields in Figs. 9 and 11 indicate that

the radiation outflow boundary condition is working properly.
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- of the y' barotropic wave train. A periodicity of 3.25 days

The y' fields for days 83 through 86 are shown in Figs.

12 through 15, respectively, to illustrate a time sequence

can be determined by examining the time series at each grid

point (not shown). We also note from this sequence that there

are three maxima of y' in the wave structure. One maximum is

at y=0 and another is on each wing of the jet near y = +750 km.

I, e, 3 ey e e s

The maximum on the wing clearly predominates. Figure 16 shows
the variation of wavelength, L(x), for y=0 and y = +750 km
corresponding to the latitudes of the observed three maxima

of y'. The disturbance wavelength is about 4100 km initially

near the inflow boundary. The wavelength near vy = +750 km

is larger upstream and smaller downstream of x=0 than at y=0.

At y = +750 km, the maximum wavelength of 5060 km occurs

O TP T SR O I PO pIs vosey LTIV $PEMANINE v2F 15y o v sy

approximately 950 km upstream of x=0 while the minimum wave-
length of 3600 km occurs near the outflow boundary. At y=0,
the maximum wavelength of 4900 km occurs about 950 km down-
stream of x=0 while the minimum wavelength of about 4000 km
occurs near x = -13,500 km with the wavelength increasing
slowly further downstream to the outflow boundary. The

range of the wavelength is between approximately 3600 km and

At et b LGS i s il S bk <

5000 km, which is nearly the same range of values obtained
for the most unstable wavelengths using the parallel flow
model in Chapter IILI. Figure 17 shows the disturbance phase

speeds, Cr*(x)’ for latitudes y=0 and y = +750 km where

cr*(x) is obtained from
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(5.2)

Since the entire domain is periodic with the forcing
frequency, cr*(x) has the same basic behavior as L(x)
[Fig. 16] for the corresponding latitudes. Namely, upstream
of x=0 the disturbance phase velocity is faster on the wings
of the jet than at y=0, and downstream of x=0 it is slower.
This behavior of both L(x) and cr*(x) illustrates the tilt
behavior of the waves as they move into and out of the baro-
tropically unstable region of the variable mean wind. More
results are presented in the next chapter.

The parallel fiow model is also employed to determine
a reasonably good forcing function that would generate
periodic wave disturbances from the eastern boundary. This
is accomplished as follows:

Equation (2.14) defines the analytical form of the
periodic forcing which is applied as an inflow boundary

condition in the complete numerical model, i.e.,

5%}

Y

(0,y,t) = A(y)wcos(wt) - B(y)wsin(wt)

[+%)
ot

Equation (4.17) describes the finite difference a

)

proximation
to this forcing. The coefficients A(y) and B(y) of (2.14)
are obtained from the eigensolution determined using the

parallel flow model for the following Bickley jet profile:

-16 m sec'1
962 km
= 4,600 km

(y=0)

™™ o =i
1}




This profile is representative of the mean flow near the
inflow region. Figure 18 shows the y-structure of these
coefficients.

Two other forcing functions, which are independently
constructed from the parallel flow model, are also tested.

These functionsare:

%%L (0,y,t) = -~ w cos(—lﬁl) sin(ut), (5.3)
and

du’ ™ 8

5 (0,y,t) = - w {cos(——ﬁl)} sin(wt), {5.4)

where D is the half width of the channel (D = 2000 km).

The behavior of the wave disturbances for all three
forcing functions are essentially the same except in the
vicinity of the inflow boundary. The parallel flow solutions
for the most unstable wavelength show a weak decay rate in
the inflow regicn (see Fig. 8). This is because the linear
friction decay rate is slightly larger than the weak local
growth rate. We found that this weak decay behavior near

the inflow boundary is achieved in the numerical model using

LAanmmainana

o 1 n | -~ - £ L~ -~ -~
n (2.1 Use of tne otne

~—
.

A
L4

(al]

forcing functi
functions, (5.3) and (5.4), realizes a weak secondary A B
near the inflow boundary. Therefore, we found through use
of the parallel flow model that the first forcing function
provided the better inflow boundary condition than the other
two, although no substantial difference occurs even if the

other forcing functions are used.
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ENERGETICS

To understand the dynamics of barotropic instability,
it is helpful to derive the disturbance kinetic energy
equation. A finite difference approximation form of this
equation is used to compute the energy budget of the waves.

The linearized momentum equations are:

3u’ 5 AU 33U, -3l (3U
5t T M T 5T vay Y 3y i
(5.5}
~ B¥Y* = = % %%— - Deu',
P
and
i a gt Y] Ayl Y]
ov = V 19V SOV OV
gt T gt Mgt Gyt gyt
£5.8)
i L Bp! .
8yu - 3y va

After multiplying (5.5) by u' and (5.6) by v' and adding the

resultant equations, we obtain the disturbance kinetic energy

equation:
ak' , =3k' | -ak' _ u.zig sty L 3
3t 3X 3y 3 3 3 X
5 L3.7)
w0 3V Toafu'e') 1 a(v'p') _oan g
Y 3y 2 IX - 3y = .
where
' 2 i
k' = “2_+12_. (5.8)

The disturbance fields are considered to have a time
dependence of the form sin[wt + 8(x,y)]. Thus, when (5.7)
is averaged over one period and over one latitudinal domain

(-D<y<D), the following energy balance equation is obtained:
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1 2 3 4 5
7 . . 2 =
‘3k' 1 _3_U 1 .E_U_ 1 na_V i 1 3_V_
<‘ Naw. ~ % g% ° Wi gg = WViaz Yo 3y *
(5.9)
6 7

T a(u'p') | N -
-5 = 2ka> = 0.

Term 1 is the advection of k' by the mean flow (u). Terms
2, 3, 4 and 5 are the barotropic exchange terms with the
mean flow. Term 6 represents the work done by the pressure
field. Term 7 is the dissipation term and represents an
energy sink. With the exception of term 6, all the terms in
(5.9) are determinable from the 7 and v' fields. Thus, the
pressure work term is determined as a residual in Eq. (5.9).
The energy equation is evaluated after the complete numerical
model achieves the fully periodic state.

Figure 19 shows the energy balance as function of
longitude. Clearly, the maximum value of each of the terms
in the energy equation occurs downstream of x=0. Curve (a)
represents the Reynold's stress term, <{(-u'v's3u/3y)> , where
the maximum value occurs approximately at x = -10,975 km.
Curve (b) represents the advection term, <(-u3k'/3x)>, of

v waAa "+
! e

+- i L]
gpresen th Tnear

K' by the zunal current. Curve {c) s the linea:

dissipation term <(Zka')>. We observe that the largest

dissipation takes place near the maximum amplitude of the

wave packet envelope, <w'(x)>max. Curve (d) represents the

pressufe work term,<<<} ii!g%—l;> . It also has a maximum
. 0

near <v'(x)>max. The remaining barotropic terms are not
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included in Fig. 18 because they are 2 to 3 orders of

magnitude smaller than <(- u'v'su/sy)>.

Recall that for Experiment I, <y'(x) occurs approxi-

”max
mately at x = -12,750 km. We observe that the advection of
k' by U plays a dominant role in the energy balance. Once
the fully periodic state is achieved, the generation of
disturbance energy by barotropic instability essentially

occurs in the region between the <y'> (x = -12750 km) and

ma x
the jet maximum (x=0). It is in this region that the
strongest positive correlations occur between u'v' and
-3u/3y in the Reynnld's term. This is consistent with the
observed¢ behavior of the waves (see Figs. 10 and 11) since
this strong correlation of u'v' is dependent on maximum
amplitude of y'squarred and the maximum tilt of the wave
structure with the shear of the mean flow -3u/3y. It is
also from this source region that u transports a large part
of this generated k' downstream to a point centered near

x = =-15,000 km.

Strongest dissipation of k' occurs in the region centered
near <w'(x)>max. It is in this region that the strongest
spatial gradients of y' occur. The largest values of pressure
work also occur in this region where the pressure work term
is computed as a residual. We note that its location of

occurrence is consistent with the large amplitudes and spatial

gradients of u' of the region. We also note that <(-u3k'/3x)>
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X
The disturbance energy balance which is shown in Fig.

graphically illustrates the basic energetics involved
supporting the large amplitudes and spatial gradients
a considerable distance downstream of the jet maximum.
Clearly, the Reynold's stress term, <(u'v'su/ay)>, is

dominant source for disturbance kinetic energy.

vanishes at <y'(x)> . since k' is maximum at this longitude.
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VI. SIMPLE MECHANISTIC ANALYTICAL MODEL

A. FORMULATION

In this chapter we develop a simple mechanistic analyti-
cal model which uses the locally determined parallel flow
solutions. The results of this simple model can be compared
with those of the complete numerical model to obtain some
measure of the adjustment of the transient barotropic waves
to the local stability of the variable mean wind.

The following equation allows for propagation and growth

or decay:

31!
3t * Cr(x)

= n(x)y' , (6.1)

where ' represents the disturbance streamfunction. cr(X)
is the local phase velocity and n(x) is the local growth rate.
We observe that if ch and n are independent of x, then
Eq. (6.1) is exact, and, in general, should give a reasonable
approximation to the downstream variation of uv'.

Let us consider the case where y' has a solution of the

form:
¢ = F'(x)e'™E, (6.2)

where w is a specified frequency. After substituting (6.2)

into (6.1), we obtain

fuF' + ¢ (x) g-)‘:— = n(x)F'. (6.3)




Rearranging (6.3), we get

1 dF' _ n(x) - iw
T ae " COET (6.4)
r
which has a solution of the form of
k]
Bl nix) - iw
an [F’*(.;-]- f ——-&-375— dx, or (5.5)
X
0
X . X ‘(6'6)
F'(x) = F' ex 5-1 ‘f T dx( exp} n(x) dx{
o st w2 g
X / X
0 0

Some fundamental insight can be gieaned from (6.6). Here
the amplitude of v' must be specified at some initial point,
Xo which could be the inflow point. The local wavenumber
is m/Cr and the spatial growth rate is n/cr. These are the
real and imaginary parts of the wavenumber, if we were to
write v'=A exp (ikx-iwt).

In this simple analytical model, we are interested in
the growth and decay of the wave packet. If the oscillatory
behavior of Eq. (6.6) is dropped, the following equation

expresses the envelope of the wave packet:

Y
Pl

o \ (x) |
F(x) = Fo &XD¢ J. %:%;7 dx {. (6.7
0

Equation (6.7) gives the exponential growth/decay behavior
of a wave disturbance as it travels within its wave packet
envelope. This behavior is determined by the integral

effects of the local stability properties of the mean flow.




B. APPLICATIONS

Figure 20 compares the envelope for v'(x) from the
complete numerical solution (Fig. 11) with the F(x) given
by Eq. (6.7) for two values of X In this figure the
amplitude is plotted against upstream distance from the
initial point Xo- The analytical model uses the locally
determined parallel flow growth rates (n) and phase speeds
(Cr) based on the wavelengths measured from the complete
numerical solutions. Therefore, Eq. (6.7) is applied at

latitude y = + 750 km where the wavelengths are measured.

The curve for F(x) can be shifted up or down by changing
Xgo but its shape does not change. In Figure 20 all the
curves have a maximum amplitude at x= - 12,750 km where

the Tocal growth rate is zero; however, the simple model
has a lower maximum growth rate and slower damping rates
than the complete numerical model.

The lower portion of Fig. 21 contains the wavelength
measured from the numerical solution at y = - 750 km. In
the upper portion of the diagram are the phase velocities,
C. from the parallel flow model and ¢.* from the complete
numerical model for the same latitude. Here . is computed
with the use of the wavelength shown. The two phase speeds
have similar behavior although Cr* is shifted slightly

upstream and has larger variations. We also note that Cr*

is generally smaller than C,. except for the region

-]1500 km ¢ x € 6750 km,
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Similarly, Fig. 22 contains the wavelengths and phase
speeds for latitude y=0. Again, the two phase speeds have
similar behavior, but at this latitude Cr* is shifted
slightly downstream and the differences between phase speeds
is generally less than at y = -750 km. Again we note that
cr* is generally smaller than cr.except for the region:
-2250 km < x < 2250 km. This indicates that both the wave-
length L(x) and the phase velocity cr*(x) between latitudes
y=0 and y = -750 km are maximum where the mean flow is
strongest.

Figure 23 contains the spatial growth rates, m and m*,
from the parallel flow model and from the complete numerical
model, respectively. For the parallel flow model, we obtain

m= - n/cr ; (6.8)

The value of m* is computed directly from the envelope. We
note in Fig. 23 that m* has a larger maximum than m and the
maximum is shifted slightly downstream from the jet maximum.
Both curves pass through 0 at x = -12,750 km which is the
maximum for both wave packet envelopes. However, m*

shows a much larger damping in the outflow region which can
also be seen in Fig. 20. In fact the parallel flow solution
damps at the rate given by the frictional coefficient
divided by the phase speed. This is expected in the baro-
tropically stable outflow region when using the parallel
flow modei because this model can only give the eigen-

solution of the most unstable discrete mode.
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The solutions observed in the numerical model (see
Fig. 10) toward the outflow boundary tilt in the same sense
as the mean wind shear which gives dynamic damping. This
tilt behavior is also indicated by the divergence of phase
speed in the outflow region between y=0 and y = -750 km
(see Figs. é] and 22). This dynamic damping appears to
be due to continuous spectrum solutions (Case, 1960; Yanai
and Nitta, 1968) which are not included in the normal mode
solutions that are employed in the simple integral
[Eq. (6.6)]. In fact we observe that, in the outflow region,
the dynamic damping is 1/t or faster, increasing near the
outflow boundary. In Fig. 23 the m* curve is skewed slightly
to the left with respect to m and the jet maximum. This
could be the result of the tilt structure in the wave lagging
spatially behind the expected value from the local stability
conditions. This would give a smaller growth rate on the
upwind side of the jet maximum and a larger growth rate on
the downwind side. This effect is indicated by the asymmetry
of the m* curve with respect to the m curve in the unstable
region of the mean wind. However, this is not the only effect
involved because the most striking feature of Fig. 23 is
the fact that the maximum value of m* is significantly
larger than the maximum value of m. We have already shown
that the most important disturbance energy production term

(see Fig. 18) in the energy computations with the numerical

solutions is proportional to




<(-u'v'au/sy)>

This term is the only source term for the parallel flow
model, and it depends on the phase tilt in the disturbance
field. Figure 24 compares the phase tilt of the numerical
model solution, 8*, and that of the most unstable wavelength
of the para]]e] flow model, 8,59 at x = 0, x = 3750 km, and

x = 13125 km. It is evident that at the jet maximum the
tilt from the numerical model is significantly larger than
for the tilt from the parallel flow model. This is also
evident but to a lesser degree at x = 3750 km. These results
are consistent with the larger growth rates for the variable
jet flow. This stronger tilt is also indicated by the
comparison of the cr* and C. curves in the region near and

slightly upstream of the jet maximum for latitudes y=0 and

y -750 km (see Figs. 21 and 22). We note that at

y -750 km, Cr* is relatively larger than c. near the jet

maximum. This difference is significantly reduced and
shifted slightly downstream at y=0. We also note that near
the inflow region (x = 13125 km), the phase tilt of the
numerical solution lags slightly behind the parallel flow
solution (see Fig. 24c). Apparently the downstream varia-
tion of U augments the phase tilt which gives a larger
growth rate.

In comparing the parallel flow theory and the complete

numerical model, a source of error could be introduced
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through the zonal resolution. This is because in the former
the zonal variation is specified by a spectral representa-
tion, while in the latter it is resolved by finite differences.
Since the wavelength appearing in the complete numerical model
varies between 10 and 13.5 ax, such resolution normally gives
a good approximation to the exact solution (Haltiner, 1971).
Thus, this error should not be very significant. In order to
confirm this we carried out an experiment in which a parallel
mean flow is specified by the full two-dimensional model
finite differences of the complete numerical modeil. The
growth rate and phase speed calculated from the experiment
agree very well with those obtained by the semi-spectral
parallel flow model, the difference being only 1-2%. Thus

we may conclude that the differences between the numerical
solution and the local solution of the parallel flow theory
are genuine and are not due to the differences in the model

resolution.

G EFFECTS OF LINEAR FRICTION

Figure 23 shows that the local growth rate, determined
by the parallel flow model, changes sign at x = -12,750 km
and that it approaches the linear friction decay rate near
the outflow region. We also note that the maximum aplitude
of both the analytical and numerical model wave packet

envelopes occurs at the lontitude where n(x) vanishes.

Based on these results, <w'>max is expected not only to




decrease in magnitude but to occur further upstream if the

lTinear frictional rate is increased. Likewise, the opposite
effect would be expected if this friction were decreased.
This hypothesis is tested by rerunning Experiment I using
a larger friction of Df = .25x10'5 sec'T which is equiva-
lent to e-folding decay time of 4.63 days. We found that
<v,';'>max occurred approximately 1700 km further upstream and
with an amplitude of an order of magnitude smaller (.4 vice

5.9) than for the original experiment.
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VII. EXPERIMENT II

In Experiment II a constant advective speed of

1 is added to the mean flow, otherwise the

Uo = -5 m sec”
parameters are the same as those used in Experiment I. We
hope this modification will shed some 1ight on the adjustment
process of a faster moving wave chain. As in Experiment I,
the analytical model also uses locally determined parallel
flow growth rate (n) and the phase speed (c) based on the
wavelength measured from the complete numerical solution.
The local phase speed ¢ is now related to the Doppler-
shifted phase speed ¢ by c = c + Uo' The maximum ¥' response
in this experiment is obtained with a forcing period of 2.5
days. Since the Doppler-shifted frequency may be written
as @ = k(c* - Uo) =y - ka’ this shorter period actually
gives approximately the same Doppler-shifted frequency as
that of Experiment I (where the period is 3.25 days with
U, = 0). Figure 25 shows the y' field for day 70.

Based on the results of the simple analytical model
[Eq. (6.8)], we expect that the constant advective velocity

Uo will significantly reduce the local spatial growth rate

n
2l
c 0

m= - (7.1)

Figure 26 shows the spatial growth rates from the parallel

flow model (m) and from the complete numerical model (m*).
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Comparing this figure with Fig. 23, the reduction in both m
and m* from those of Experiment I is clear. This reduction
is evidently due to the advective velocity which causes the
disturbances of Experiment II to move approximately

-5 m sec'] faster than in Experiment I. Thus, the waves
have less time to grow or damp in response to the local
stability per unit distance traveled. The smaller spatial
growth rate obviously affects the amplitude and spatial
gradients of y'. Figure 27 shows the wave packet envelope
<p'(x)> of the complete numerical solution for Experiment II.
Figure 28 shows this envelope along with the analytical model
envelope F(x) using either Xg = =375 km or x, = 3750 km as

the initial point (no discernible difference is noted between
the use of these initial points). Both envelopes are, as
expected, significantly smaller than those of Experiment I.

In addition, there is less variation in the wave]éngth

(3750 km < x < 4875 km) compared to Experiment I. This is
also a result of the faster phase speed which causes the waves
to have less time to adjust to the local u(x,y).

Although the faster phase speed of the waves in
Experiment II reduces the magnitude of growth and decay rates
and therefore brings the spatial growth rate curves of the
numerical model (m*) closer to that of the parallel flow
model (m), we notice a stronger asymmetry in the m* curve
with respect to x=0 in Fig. 26 compared to Experiment I

(see Fig. 23). In addition to the maximum m* occurring
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slightly further downstream of the maximum of m(x=0) than in

Experiment I, the cross-over points of the m* and m curves
exhibit more asymmetry in Experiment II than I. The first
cross-over point occurs approximately at longitude x = 8500 km
and x = 4000 km for Experiments I and II, respectively, while
the second cross-over point occurs at approximately
X = -1é000 km where the spatial growth rates vanish. As in
Experiment I, we interpret this asymmetry as being due to the
tilt structure of the waves lagging behind the expected value
from the local stability condition. The fact that this lag
effect is enhanced by the faster phase speed of the waves in
Experiment II can also be seen in Fig. 29 where the north-
south phase tilt o*(x,y) of the wave disturbances for both
experiments are compared at several longitudes. The unstable
tilt in Experiment II is weaker upstream and stronger
downstream of approximately x = -2000 km reflecting the

i stronger lag effect of the faster moving waves.

figure 30 compares the phase tilt of the numerical model

solution, 58*, and that of the most unstable wavelength of

the parallel flow model, eo,for two longitudes (x=0 and

x = 3750 km). Comparing this figure with Fig. 24 of

Experiment I, it is obvious that the apparent augmentation

of the wave tilt due to the zonal variation of U(x,y) is now

significantly reduced. This behavior may at least be

partially explained by the lag effect caused by the advective

current Uo’ which generally reduces the growth rate in the

vicinity of the jet maximum.
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The lower portion of Fig. 31 shows the wavelength

measured from the numerical solution at y = -750 km. In
the upper portion of the diagram are the phase velocities at
y = =750 km, c* from the complete numerical model and ¢ from
the parallel flow model based on the corresponding numerical
solution wavelength. The two phase speeds agree very closely
upstream of the jet maximum while c¢* is smaller than c down-
stream of this longitude. Similarly, Fig. 32 contains the
wavelength and phase speeds for latitude y=0. At this
latitude, the two phase speeds have similar behavior through-
out the length of domain with c* being approximately
1 m sec™! slower than c. Figure 33 shows the wavelength
curves [L(x)] for latitudes y=0 and y = -750 km. At both
latitudes the maximum wavelength occurs near the jet maximum,
but the wavelength (and therefore phase velocity) at
y = -750 km is larger upstream and smaller downstream of
approximately x = -5000 km. As in Experiment I, these
differences in c*(x) and L(x) between the two latitudes are
consistent with the observed tilt behavior of the waves.
Other than the foregoing mentioned differences, the
basic behavior of the waves in Experiment II is similar to
that of Experiment I. This includes the tilt of the waves
and its reversal from that of agrowth to that of damping

downstream of <y the occurrence of <y's> a consider-

> s
max max

able distance downstream of the jet maximum, the general
shape of the wave packet envelope, and the longitudinal

variation of the energy balance (Fig. 34).




< (WY oo00L)1

9"

“(x)1 yrbuaaaem (q)
919 dwod ayy wouay (X)x2 pue “papow mo|J

“L8pow [edradwnu
|91 eaed ayy wouy

(x)2 “saLjtooan aseyqd (e) “wy oGg/- = A apnitye] "1 judwigadxy g 614
< (WX 000L)X
mp m. w € @ €- 9- 6- L= Gl- 8Ll- Le-

=
81-

61-

0¢-

Le=

(225 w)?




(WX 000L)7

<+

9°¢

“(x)71 yabuagaaeny (q) - apou

[eotadunu 339 dwod 9yy wody (x)yd pue “(apow mo|y [a||esed ayy
wouy (X)2 S’aLILI0(3A 3seyd (e)

"0 = A apnjizer 1 juawmtaadxy g by
« (WX 000L)X
€- 9= 6- il G- Bl - Vg

S

T v T T L v R

(x)7




‘wy 0G/- = K pue =K sapniiie| 40j (x)7 yrbusgaaeym ] judwlJsadxiy -gg "Hi4

< (WX 000L)D

§ Al N b 2 13 0 5= 9- 6~ "4 Bl Si- 61- 12~

¥ T T T T T

(=]
<

« (WY 000L)1




d

.AA.a.zvm% ] -)> ‘wadyl yuom aanssaad (p) pue mAa.xu:N-vv ‘waal
uorjedissip (2) <(xe/qen-)> wasy jaodsueay AGuasua (a) t<(Ae/ne,A,n)>
"WA3] ssadl}s s,ploukay (e) :aduepeq Abudua 3duequnisiq “I1 quawiaadxy -y

< (Wi 000L)X

6- A G- 81~ Le- Vig=

v T T T T 1

. e —
* \‘vv ~
.

‘s‘ \

b1y




s o R T

0

SRR R

VIII. SUMMARY AND CONCLUSIONS

In this work we studied the behavior of waves moving
into and out of a barotropically unstable mean wind field
which varies both in x and y. This mean wind field roughly
simulates the 200 mb easterly jet south of the Tibetan high
during the Northern Hemisphere summer. A rectangular domain
is used with a time periodic forcing on the inflow (east)
boundary and a Sommerfeld radiation condition on the outflow
(west) boundary. This allows the simulation of the propaga-
tion of small amplitude waves through the easterly jet region.

lane is solved with the use

The vaowvticitv a n
' ¥y v L S - rll

he Y uation on a beta

gqu
of finite differences, and, when the boundary conditions are
properly adjusted, the barotropic waves move smoothly across
the region and out the western boundary. After a certain time
period of numerical integration, the solution becomes

periodic everywhere with the forcing frequency which is
specified on the eastern boundary. As the waves move

through the jet regime, they grow or decay spatially in
response to the local stability of the mean flow, even

though at each point the variation is purely harmonic. The
numerical results are compared with a simple mechanistic
analytical model which is developed using the local growth

rate and phase velocity computed from the parallel flow

theory.
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Two experiments are carried out in this investigation.
The parameters used in these experiments are the same,
except that in Experiment II a constant advective velocity

1 is added to the mean flow in order to

of Uy = -5m sec”
gain a better understanding of the adjustment process of a
faster moving wave train.

The basic behavior of the waves in both experiments is
similar. This includes the following:

1) The maximum amplitude of the waves occurs a
censiderable distance downstream from the most unstable part
of the jet near where the local growth rate of the parallel
flow theory vanishes.

2) The tilt structure of the waves and its reversal
from that of growth to that of damping occurs downstream of
the maximum of the wave packet envelope in response to the
local stability of the mean flow.

3) The wavelength (and therefore phase velocity)
increases slowly from the inflow boundary to a maximum value
near the jet maximum and then decreases slowly downstream
reaching a minimum value near the outflow region.

4) The Reynold's stress term <(u'v'au/3y)> is the
dominant source for disturbance kinetic energy and the
advective term <(-Usk'/3x)> plays a significant role in
transporting a considerable part of this energy downstream

from the source region.

5) Large spatial damping occurs in the outflow region

due to the presence of the continuous spectrum modes.




In Experiment I where the mean wind vanishes toward
large y, the maximum spatial growth rate in the numerical
model is significantly larger than the spatial growth rate
of the parallel flow model. Apparently the downstream
variation of the mean wind augments the phase tilt of the
waves thus causing an increased growth rate as compared with
waves in a parallel flow. In Experiment II where the waves
move westward faster due to the presence of a constant

1 advective zonal wind, the spatial growth rate

- 5 msec”
computed by the numerical model is brought closer to that
given by the parallel flow theory, but the asymmetry of the
numerical growth rate curve with respect to the jet maximum
is enhanced. The reduction of spatial growth and decay rates
is mostly due to the faster phase speed which causes the
waves to have less time to grow or damp per unit distance
traveled. The enhanced asymmetry is apparently due to a lag
effect wherein the adjustment of the waves is delayed
spatially. The latter effect is also reflected in the north-
south phase structure of the waves and in the smaller varia-
tion of the wavelength as the waves propagate downstream.
The augmentation of the phase tilt by the downstream
variation is also significantly reduced which may at least
be pariidiiy expiained by the Jag effect.

Recently Pedlosky (1976) used a simple analytical model

to study the effect of the downstream variation of a baro-

clinic current. The mean flow in his model changes abruptly




from a weakly unstable regime with a constant growth rate

to a stable regime downstream. His model includes nonlinear
effects but it does not produce strong dynamic damping due

to the continuous spectrum modes. This is perhaps because

he did not include the lateral shear of the mean flow. Thus,
Pedlosky found that his disturbances remain substantially
undiminished when they propagate from a locally unstable
region to a locally stable region.

The behavior of the wave disturbances in our study
resemble certain aspects of the waves observed by
Krishnamurti (1971a, b) along the South Asia easterly jet
during the Northern Hemisphere summer, and the waves that
were simulated by Colton (1973) in a nonlinear model. The
wave disturbances entering upstream of the easterly jet
regime grow and increase their speed and wavelength as they
approach the jet maximum. They then achieve their maximum
amplitude a considerable distance downstream of the jet
maximum and subsequently decay as they leave the strong jet
regime,

The simple mechanistic analytical model developed in
this study can crudely approximate the adjustment of tn
meving disturbance to the local stability of a variab]
fiow within the dynamicaily unstabie regic
that this simple approach could be used to

instability of other variable mean flow
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Although this study employs linear equations, it is

possible to estimate qualitatively the nonlinear effect of
the waves on the mean flow. Since the Reynold's stress term
is the dominant term in the energetics, most of the mean
kinetic energy is removed by the waves on the downwind side
of the jet maximum between where the wave amplitude is
maximum and where the phase tilt of the waves is strongest.
Clearly these synoptic scale waves will affect the amplitude
and phase of the quasi-stationary planetary waves which
combine to form the easterly jet over South Asia. These
effects can be studied by including nonlinear effects in

the present model. It may also be interesting to extend the
present model to a 3-dimensional model to study the effect

of vertical shear and baroclinicity.
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APPENDIX
Subroutine PQISDD

Subroutine POISDD is a direct method solver of the
finite difference approximation to Poisson's equation

(Sweet, 1971):

v2u(x,y) = - flx,y) (1)
for a<x<b
c<y<d

and with Dirichlet boundary conditions

u(x,c) = g;(x)

u(x,d)

n

gz(x) a<x<b (2)
u(a,y) = g5(y) c<y<b
u(b,y)

We define a grid on the rectangle {(x,y): a<x<b,

"

9,4(y)

c<y<d} by selecting two positive integers M and N, such that

_ b-a _ d-c
sk = == and 8f # == (3)

and where N must be a power of two, and the points

X5

Y

where i and j refer to the x and y grid points, respectively.

a + (i-1)ax VET P g b =
(4)

€ + (J=1)ayY Sl 2 e s W

The Poisson equation that is solved by POISDD is given
by Eq. (2.10):

2 3 _ 8 o 3y é. (5)
Vs = - L vTt) - a(w!',v09) - 83— - DYy

i 97 I ,



with boundary conditions Eqs. (2.11), (2.14) and (2.16). The

finite difference form of these equations are given by Egs.
(4.10), (4.14) and (4.17). Here Tifj is the finite differ-
ence representation for the tendency, aw'/at, and is the
dependent variable in our Poisson equation. For our
Numerical Model, M=106 and N=32; t is the current time,
where t = 24t 2 = 1,2.... and At in the time step.

OQur system of equations meets the requirements of

subroutine POISDD, except for the outflow boundary condi-

tien, Eg. (2.16}).

(32 - cro-a?;(ﬂu . (6)

This equation is the Sommerfeld radiation condition (Pearson,

1974). Clearly, this is not the usual form of Dirichlet

boundary condition. Therefore, in order to use POISDD in

our numerical model, this subroutine had to be modified

incorporating the radiation outflow condition. 'as

done by writing Eq. (6) in finite difference form:
T.t_ qteat Tttt

1q] | %
At r A X

(7)

n
(g]
n
-
.
)
p—
Ca.
-

where the finite difference symbols have their usual meaning
in numerical weather prediction. Subscript i=1 refers to
the outflow boundary, and subscript i=2 refers to the

column of grid points next to this boundary. We observe

that this scheme is backward in time with upwind space




differencing. Equation (7) is conveniently rewritten such

that
Tt-at 7.k
Tt = ]’J + 23\] (8)
1,3 - 1 + ¢c_ At/Ax 7T + Ax/{c_ At)
"o Yo

Since all the interior points of the domain must satisfy the
non-homogeneous Poisson equation, we, then, use this constraint
to couple the radiation boundary condition [Eq. (8)] with the

interior points, as follows:

(9)
t t t t it it
RS Tl ol R T
sz Ayz 2!\]
The term fi j is the finite difference approximation to the

right side or non-homogeneous part of Eq. (5) or Eq. (2.10).
We multiply Eq. (9) by -(Ay)z, and we obtain

t t t
- T3§j : ZTg’j ; Tléj - Taiger * 2oty - Tonga
| 4 fz’jAyg (10)
where s = AXZ/AyZ.
We now combine Eq. (8) and Eq. (10), and we get
et T s
“Tage f [2 e e
s(T+z—2¢)
v "o an
‘ » ttAt
'T25j+1 ) f2,jAY2 i S[1+1:JAt/Ax]
0
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By incorporating Eq. (11) in subroutine POISDD, we
have, thus, coupled the Sommerfeld radiation boundary condi-
tion to the interior domain. Also, by Eq. (8), we now have
a complete set of Dirichlet boundary conditions. The finite
difference Eqs. (4.10), (4.14) and (4.17), thus, form a
linear system of equations of dimension (M-1) x (N-1) for
the unknowns TiEj: éiiiM, égjiN. This system is solved in
POISDD by the Buneman variant of the CORF (cyclic odd-even

ROV SRy

reduction and factorization) algorithm. Buzbee et al. (1970)
gives a complete mathematical description of the algorithm.
Sweet (1971) gives a brief description of the subroutine.

A function of two variables, B is used in the

Tl
numerical model code to represent a two-dimensional array

which provides, on input to POISDD, values of the function

f as well as the specified boundary conditions. On output

14d
from POISDD, it provides the values of the approximation
t

1sd
boundary condition on input to POISDD as follows:

- T For our numerical model, we approximate the outflow

; * = 1
| B1,4 * TFe-FE7ER ¢ (1e

0

On output from POISDD, we correct Eq. (12) by

th
e BT gl
Tl,j B],j 2 1+Ax/(cr At) (13)

0
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